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Section Paper:

Acquiring musculoskeletal skills with curriculum-based
reinforcement learning

Alexander Mathis & 1256 XX

Efficient musculoskeletal simulators and powerful learning algorithms provide computational tools to
tackle the grand challenge of understanding biological motor control. Our winning solution for the
inaugural NeurlPS MyoChallenge leverages an approach mirroring human skill learning. Using a novel
curriculum learning approach, we trained a recurrent neural network to control a realistic model of the
human hand with 39 muscles to rotate two Baoding balls in the palm of the hand. In agreement with data
from human subjects, the policy uncovers a small number of kinematic synergies, even though it is
not explicitly biased toward low-dimensional solutions. However, selectively inactivating parts of the
control signal, we found that more dimensions contribute to the task performance than suggested
by traditional synergy analysis. Overall, our work illustrates the emerging possibilities at the interface
of musculoskeletal physics engines, reinforcement learning, and neuroscience to advance our
understanding of biological motor control.



Figure 1: Definition of the SDS curriculum, performance benchmarks, and
ablation study

A Themuscuoskeletainand Fyplain the task tackled by the authors in the MyoChallenge?

4 j Boading Balls: make balls rotate in tandem along a circular trajectory in a hand (39 muscles, 23
joints) to follow a pair of moving targets.

Why is a model-free method like PPO failing on that task according to the

authors? (in text)

o Sparse reward function: insufficient to develop effective policies.
B Tesk variations in Phase | Gradient of the task objective needs to be inferred from the reward function.

How is the SDS curriculum enhancing the model-free optimization process?

structured learning pathway — 1: hold the balls, learns multiple static configuration, 2:
dynamical transition, gradually merge the confs via incr. faster dynamic traj, 3: random target
initialization / domain randomization. Note: no parallelization possible (400h training).
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Figure 2: Kinematic and dynamic motifs within one full rotation of each
Baoding ball for one episode of the SDS policy, after completion of the
training curriculum
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Figure 3: Dimensionality of the control policy and SDS policy in the
Baoding balls task

What can you say about the number of
synergies used to control the hand? Comment
on tasks and artificial/biological subjects
(Panels A-B-C)

- Only a few synergies to capture most of the
variance in posture (joint angle) and muscle
space (muscle activations).

- Dim of hand poses during Baoding lower than
control task for both SDS and human.

- Dim of hand poses really similar between SDS
and human.

- Difference of dim for angular velocity of the joints
between SDS and human: expected as
instructions on speed were different.

- Muscle activations dim higher for baoding: more
complex co-activation of antagonist muscles.
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Figure 4: Task relevance of the low-variance PCs of the SDS policy

A oniil submscalinactivaiion Explain the control subspace inactivation (CSI)
e procedure proposed by the authors. What is it
b\ used for? What are the results ?
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Figure 5: Transfer of muscle synergies from other tasks to Baoding
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What are the differences between SDS step 12 and SDS final ?

- The PCA of the hand kinematics shows that the
final SDS policy and the SDS step 12 policy are
the very similar, while in the muscle-activation
space, the SDS step 12 and the final SDS are
more different

- Require different muscle synergy spaces for high
performance

Can policies transfer from one task to another ?

- Not unless at least 30 PCs are used.



Figure 6: Population activity of the SDS policy network
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Paper round-up

St b b il s e

They succeeded in training a musculoskeletal el ol W
model on an object-manipulation task. @“» > ‘]
They propose a static to dynamic stabilization ‘;{;;. ?y‘n;:
(SDS) curriculum, inspired by coaching practice.
They show that, akin to experimental data, SDS Arebysisefthe amedmoter system

. . . . . . Dimensionality Learned Synergies Analysis of Neural Dynamics
learns low-dimensional kinematic and kinetic T
spaces. %& & &
They show that muscle synergies are highly task k fl %\ g”'
specific and thus generalize poorly. cospreeima SR, Lo anging o
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space, consistent with previous observations that T 1 | JJ
motor cortical dynamics avoiding tangling more e * Numbé,o,';jfo;;;“ ~

than muscle dynamics.



What did we learn? What questions do we have?

e What points do they make in the discussion?

e Is anything unclear?

e What would you do next if you had to desigh an experiment?

e Add haptic feedback in the model.
e I/mplement curriculum-based RL on other tasks.



